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orientation but wrongly placed with respect to any 
symmetry elements that may be present in the unit cell. 
An incorrect structure of this kind may well refine 
reasonably satisfactorily into a false least-squares 
minimum; in general, however, it will correspond to 
unreasonable intermolecular distances. The second way 
is to try to establish the position of the molecule from 
the Patterson function calculated with the full set of 
reflexions. For regularly built structural motifs of 
known shape and in known orientatien, this should 
not, in general, present severe difficulties. 

The main danger is likely to occur from the use of 
fully automatized procedures for sign or phase deter- 
mination, combined with automatic peak searches for 
trial models. These procedures may well lead not to the 
correct structure but to some pseudo-homometric va- 

riant, which may only be recognized as such after 
considerable expenditure of computer time, if at all. 

We are grateful to Dr O. Ermer for helpful discussion. 
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A derivation of the geometrical distribution of multiply diffracted X-ray beams in single crystals is pre- 
sented. Included is a brief survey of the geometrical and analytical methods, with some new concepts 
and constructions, which are useful in the interpretation and prediction of X-ray multiple diffraction 
phenomena. Applications include the analysis of Kossel patterns, calculation of angles of diffraction, 
and precision determination of lattice parameters and wavelengths, for which appropriate formulae and 
procedures are given. 

1. Introduction 

The phenomena associated with the simultaneous dif- 
fraction of an X-ray beam by more than one Bragg 
plane in a crystal have long been known (Renninger, 
1937; Berg, 1926). In most instances their presence con- 
stitutes an undesirable complication, as for example in 
the measurement of diffraction intensities from single 
crystals, and therefore many workers have attempted 
to avoid their occurrence (Coppens, 1968; Zocchi & 
Santoro, 1967). Several authors have found, however, 
that these effects have a variety of useful applications 
to the study of single crystals, and for this reason it is 
necessary to know the directions of singly- and mul- 
tiply-diffracted X-ray beams in crystals. In the analysis 
of Kossel patterns (Kossel & Voges, 1935) the points 
of intersection between diffraction and deficiency conics 
locate the doubly-diffracted beams and their relation- 
ships are used to determine the lattice parameters of 
the crystal. Of particular value are those cases in which 
two or more doubly-diffracted beams are separated by 
a very small angle (Mackay, 1965). The great accuracy 
of absolute angular measurement possible with very 
small angles yields the most precise values of the lattice 

parameters. This principle has been used to measure 
the lattice parameter of diamond by Lonsdale (1947), 
and of silicon by Isherwood & Wallace (1966). The ef- 
fect of arsenic incorporation on the germanium lattice 
has also been studied (Isherwood & Wallace, 1970). 
The theoretical basis of this method is the principal 
subject of the present paper. 

Also of considerable interest are cases of systematic 
triple or multiple diffraction, the occurrence of which 
is independent of wavelength and is governed only by 
crystal symmetry. Thus if the symmetry is disturbed by 
a homogeneous distortion of the lattice, the resulting 
modifications to the geometry of the doubly-diffracted 
beams enable the distortion to be measured and anal- 
ysed. This has been demonstrated by Isherwood (1968) 
in a study of the surface layers of yttrium iron garnet 
crystals. The theory of this method will be described in 
a separate paper. 

2. The geometrical interpretation of multiple diffraction 

In order to predict the occurrence of multiply-diffracted 
beams and to calculate their angular relationships to 
the crystal lattice, a review of the geometry of diffrac- 
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tion is desirable. In this paper consideration is re- 
stricted to the description of diffraction in reciprocal 
space. Although the conditions for multiple diffraction 
may be derived with equal facility in real space using 
Huygens's construction, it is the experience of the au- 
thors that the Kossel type of construction offers greater 
advantages in computation. In reciprocal space Bragg's 
relation is summarized in the statement that the differ- 
ence between the reflected and incident wave-vectors is 
equal to the reciprocal-lattice vector of the Bragg plane. 
This is illustrated in Fig. 1. The incident and reflected 
beams, KO, OK', are generators of the Bragg cone and 
terminate on the circle of intersection of the two dis- 
persion spheres of radius 1/2 drawn about O and G. 
Allowing 2 to vary, K, K'  always lie on the Brillouin 
zone boundary, the plane that mirrors O and G. The 
parallel plane passing through G at twice the distance 
from the origin is known as the Kossel plane, and the 
sphere of radius 2/~. about O is the limiting sphere. It 
is convenient to designate the vectors terminating at the 
intersection points C, C'  of the Kossel plane and the 
limiting sphere as double wave-vectors. The Ewald 
sphere of radius 1/2 with centre at K passes through O, 
G and C. 

Simultaneous or double diffraction occurs when the 
Bragg cones corresponding to two lattice planes inter- 
sect and the incident beam is parallel to their common 
generator. Fig. 2 shows how for a pair of reciprocal- 
lattice points, GI and G2, the two possible doubly-dif- 
fracted incident beams are defined by the points Co~ z, 
C012 at which the line of intersection of the correspond- 
ing pair of Kossel planes intersects the limiting sphere. 
(In Fig. 2 the beams generated by Bragg reflexion of 
these two incident beams are indicated by superfixes of 
the corresponding plane). These two directions coin- 
cide at the point S when the Kossel plane intersection 
is tangent to the sphere. This critical condition defines 
a maximum wavelength for double diffraction since no 
solutions are possible if the intersection line lies outside 
the limiting sphere. 

Finally triple diffraction occurs for the three recip- 
rocal-lattice points Gb G2, G3 when the point of inter- 
section of the three Kossel planes, denoted T, lies on 
the limiting sphere. The Ewald sphere with diameter 
OT passes through Gb G2 and G3. The condition for 
triple diffraction requires an exact relationship between 
the wavelength and lattice parameters of the crystal, 
which will in general not be satisfied for monochrom- 
atic characteristic radiation, except in a rare contin- 
gency. 

For any three Bragg planes there is thus a single value 
of 2 for triple diffraction, unless they belong to the 
same zone. The Kossel planes of tautozonal Bragg 
planes are themselves tautozonal and thus in general 
only intersect in pairs, so that triple diffraction cannot 
occur. A special case occurs when, as a result of the 
symmetry of the lattice, three Kossel planes intersect 
in a common line. The points of intersection with the 
limiting sphere define a pair of triply-diffracted incident 

beams for any wavelength below the critical value. This 
case is called systematic triple diffraction because its 
occurrence depends not on the wavelengths or lattice 
parameters but on the point symmetry group of the 
crystal. 

The point of triple diffraction, 7', is effectively the 
intersection of three Kossel lines of double diffraction 
corresponding to pairs of reciprocal-lattice points. It 
follows that if the point T does not lie exactly on the 
sphere of reflexion but is very close to it, either inside 
or outside, there will be three points on the sphere very 
close to each other for which a condition of double dif- 
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fraction occurs.This case is illustrated in Fig. 3.The three 
corresponding doubly-diffracted incident beams will 
thus be separated by very small angles. Since the values 
of very small angles can be measured with a great ab- 
solute accuracy, this condition of near triple diffraction 
presents the most favourable conditions for the precise 
determination of the relationships between the lattice 
parameters and wavelength. The prediction of the con- 
ditions for triple diffraction and the methods of calcu- 
lating the lattice parameters in cases of near triple dif- 
fraction are described in subsequent sections. 

A similar case is observed when the intersection of 
a pair of Kossel planes is not quite tangential to the 
limiting sphere but lies just inside it. Then the two 
doubly-diffracted incident beams defined by C0~2, C;12 
are again separated by a very small angle. These cases 
have been of particular interest in the analysis of Kossel 
patterns where they give rise to lens-shaped figures 
(Heise, 1962). 

It may be shown that the two reflected beams 01K12, 
02K12 generated by the incident doubly-diffracted beam 
K~20 are themselves simultaneously diffracted beams. 

Let the symbol k represent the vector OK. Then the in- 
cident beam may be represented by the vector k12, and 
the two reflected beams by the vectors lk12 , 2k12. Bragg's 
relation is satisfied for both reflexions in the expres- 
sions lk12- k12 = gl,Ek12-- k12 ~- g2. A third diffraction 
condition is obtained by subtraction, yielding lklE-2k12 
=h, where h is the reciprocal-lattice vector g l -g2 .  
Thus the beam lk12 is diffracted simultaneously by the 
planes represented by t~1 and h, while 2k12 is diffracted 
simultaneously by both gz and h. Furthermore each 
simultaneously diffracted beam as well as the incident 
beam may also be regarded as a consecutively diffracted 
beam. For instance k12 is the beam reflected by g2 and 
incident on g~, or the beam reflected by ~1 and inci- 
dent on g2, and so on. 

/G2 \ 

o 

]~i£ CTION 0 KOSSEL 

Fig. 3. The condit ion of near triple diffraction: ~ double 
wave-vector, - - -  Kossel plane intersection. 

It is convenient therefore to devise an alternative 
system of notation which expresses the symmetry of 
the beams and the reciprocal-lattice vectors involved in 
double diffraction. A notation of this type has also been 
used, for example by Ewald & H6no (1968) in their 
exposition of the dynamical theory of double diffrac- 
tion. Let us use Roman numerals to denote the beams 
as follows: 

kI  --- 2k12 
k l i  = lk12 ( l )  

k i n =  kxz. 

Now let us define three reciprocal-lattice vectors as fol- 
lows using Bragg's relation. 

gI = k l I I - k l I  
glI =kI  - k I I I  (2) 
g m = k I I  - k I .  

It is clear that gi=~l ,  gii=g2, g l i i = h ,  kI is the beam 
reflected by grI and incident on gin, klI is consecutively 
diffracted by giii and gi, and kI I I  by gi and gii. Since 
h = gl - g2, gI  + g l I  q- g I I I =  0, so that the three vectors 
form a triangle. This is illustrated in Fig. 4 circum- 
scribed by a section of the Ewald sphere. The corre- 
sponding doubly-diffracted wave-vectors are shown. 

3. The dynamics of double diffraction 

Although doubly- and multiply-diffracted beams can 
be identified in Kossel patterns by the intersections of 
diffraction on deficiency conics generated by a point 
source, they may be more specifically indicated by the 
intensity contrast effects which distinguish them from 
singly-diffracted beams. Both positive and negative con- 
trast effects may be observed, for which the doubly- 
diffracted beam has a greater or lesser intensity than 
the singly-diffracted background. These effects may be 
regarded as being caused by the redistribution of energy 
between the diffracted beams due to the coupling of 
Bragg reflexions. A strong positive contrast occurs in a 
relatively weak Bragg reflexion when a strong reflexion 
is simultaneously excited, provided that the interme- 
diate or difference reflexion is also strong. There is a 
corresponding decrease in intensity in the coupled re- 
flexion. Renninger (1937) and others have shown that 
certain systematically absent reflexions may be excited 
by coupling to a strong reflexion. Renninger used the 
term 'Umweganregung' to describe the generation of a 
forbidden reflexion by consecutive diffraction by two 
Bragg planes. An example of negative contrast is the 
'Aufhellung' effect, first observed by Berg (1926). 
There is a decrease in diffracted intensity when the in- 
cident beam simultaneously satisfies the diffraction con- 
ditions for two Bragg reflexions of equivalent strength. 

In transmission through thick crystals singly-dif- 
fracted beams suffer less than the normal absorption 
due to the Bormann effect. For certain combinations 
of reflexions the doubly-diffracted beams suffer a fur- 
ther decrease in absorption and a strong positive con- 
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trast is observed. This so-called 'double Bormann' ef- 
fect has been observed in beams simultaneously re- 
flected by the 111 and 111 planes of germanium by 
Bormann & Hartwig (1965). 

The detailed theory of the intensity contrast asso- 
ciated with multiply-diffracted beams is at present little 
understood. Although Renninger used a kinematical 
description, most theoretical studies have been based 
on the dynamical theory of diffraction due to Ewald 
(1937) and yon Laue (1931), but the solution of the 
equations for the constant frequency (or dispersion) 
surfaces presents formidable difficulties. Solutions for 
special cases have been given by Saccocio & Zajac 
(1965), Dalisa, Zajac & Chiu (1968), Joko & Fukuhara 
(1967), and Ewald & H6no (1968), while a more com- 
plete solution has been given by Penning (1968) for the 
case of centrosymmetric crystals. 

When making measurements using doubly-diffracted 
beams, the most favourable conditions are provided by 
beams subject to the Renninger effect which have the 
greatest contrast and visibility. It is useful to select 
these conditions in advance. Renninger reflexions are 
not to be found in crystals where the atoms lie on a 
Bravais lattice, and the presence of a glide plane or 
screw axis in the space group is necessary. For certain 
lattices, such as diamond, the reciprocal-lattice vectors 
of the forbidden or very weak reflexions form a super- 
lattice. These reflexions may be excited by coupling to 
any reflexion whose reciprocal-lattice vector is not a 
translation vector of this superlattice, to ensure that 
the intermediate reflexion is not also forbidden. For 
example in the diamond lattice the forbidden reflexions 
are those for which (h + k + l) = 2(2n + 1), and they may 
only be excited simultaneously with reflexions for which 
h,k,l are all odd. 

4. Calculation of  the diffraction conditions 

In all the calculations that follow, the Kossel plane 
method has been used. Most of the results may be ob- 
tained with equal facility using the Huygens wavefront 
construction in real space. Methods of solving Kossel 
patterns based on the use of spherical trigonometry are 
given by Heise (1962) and others. 

In reciprocal space the basic equations are those de- 
fining the Kossel planes. Let c~ be a double wave-vector 
terminating on the Kossel plane generated by the recip- 
rocal-lattice vector gi, shown in Fig. 1. Then we have, 
following Mackay (1965), 

c~. gi = Ig~l 2 = G~. (3) 

The index zero is given to any vector lying on the 
sphere of reflexion which is defined by 

1e012=4/2 2 (4) 

The suffixes carried by the vector c indicate the equa- 
tions which they satisfy. In reciprocal space the prin- 
cipal elements occurring in the equations are the qua- 
dratic forms and scalar products of the reciprocal- 

lattice vectors, which are denoted by 

Gi =lgl 2 
E~ = g~. gj 

It is often convenient however to replace the elements 
E by the quadratic forms of the difference vectors 

n i i =  Ih~yl z = Igi - gjl 2 

so that the only quantities appearing in the formulae 
are the moduli of the reciprocal-lattice vectors. Since 
these are the same quantities that are directly measured 
in the Debye-Scherrer photograph, using equations 
like 

(Gi,Hd = 2(1 - c o s  20~)/22 

a direct comparison between the powder pattern and 
Kossel pattern is possible. In each case the two for- 
mulae are quoted, one containing elements G and E, 
the other G and H. A full summary of the symbols and 
notation used in the calculations is given in the Appen- 
dix together with some basic definitions and equations. 

The formulae to be calculated are perfectly general 
and can therefore be applied to all classes of crystal. 
When a single characteristic wavelength is used it is 
often convenient to normalize the equations with re- 
spect to the wavelength so that the elements G, E and 
H are multiplied by 2 2. In the case of cubic crystals all 
the formulae naturally take on simpler forms. It is then 
most convenient to normalize the equations with re- 
spect to the lattice parameter, so that ]c] z is multiplied 
by a 2, and G, E and H are simply quadratic functions 
of the Miller indices, h, k and l. 

4.1. The condition for double diffraction 
The condition for double diffraction by the two 

Bragg planes whose reciprocal-lattice vectors are gl, g2 
may be expressed by the followin~ equations 

c12 • gl = G1 ] 
C12 g2 ---= G2 ]" (5) 

K 

SECTION OF EWALD SPHERE 

Fig.4. Vector diagram for double diffraction: 
vector, - - -  r e c i p r o c a l - l a t t i c e  vector. 

wave- 
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where c12 is twice the doubly-diffracted wave-vector. 
Let us consider first the case of critical double diffrac- 
tion which occurs for the smallest value of c12 which is 
denoted s. s is coplanar with gl and g2 and may be 
written 

S = f l lg l  + f lzg2.  (6) 

Substituting in equation (5) we obtain the following 
expressions for/Zl,/z2 

Ul21 = Gz(G1 - E) ] 
Ul tz=GI(G2-E)  ~ (7) 

where E denotes the scalar product ga. g2, and 

U= Igl × gzlZ=G1G2 - E 2 .  

X-rays of wavelength 2 are diffracted if 

1sl2=4/2 2 . 

After simplification the following expression is ob- 
tained for [s012: 

Ulsol 2 = GIG2(G1 + G2-  2 E ) ;  (8) 

therefore 

1 _ G1G2(GI+ G 2 - 2 E )  (9) 
2 2 4(G1G2-E 2) 

When this critical condition is not satisfied the doubly- 
diffracted beam corresponds to a point on the line e12 
determined by 2. e12, which is the intersection line of 
the two Kossel planes, may be expressed as follows 

el2 = S + / / 3 (g l  × g2). (10) 

The intersection with the sphere of reflexion is denoted 
C01z and is given by 

[ColzlZ = Isl z + ~] u=4/X z (11) 

since s .  (gl x g2)= O. Therefore 

c012 = s + (4/2 2 -  ]s[Z)l/2(g 1 x g2) U-l/2 . (12) 

The direction cosines of the doubly-diffracted beam are 
found by resolving equation (12) into its components. 

There are two doubly-diffracted beams defined by 
each pair of Bragg planes and these correspond to the 
two signs before the square root in equation (12). The 
angle between this pair of beams, V, is calculated as 
follows. Let bo be the difference vector between the two 
solutions eo~2, eo~2. Then using the cosine formula 

Ib012 = 2[e0[z(1 - c o s  V ) (13) 

b0 is also calculated from equation (12) which yields 

]b0l 2 = 4([c0[ 2 -Is]Z). (14) 

Eliminating [b0l, we obtain a relation between It0[ and g/ 

2leolZ(1 + cos ~) = [sl 2 . (15) 

Substituting for Isl and leol we have 

1 _ GIG2(G1 + G2-  2E) (16) 
2 2 4(GIG2-E2)2(1 +cos V)" 

This is the same as equation (9) except for a factor 
2(1 +cos V) which may also be written 4 cos 2 V/2. In 
the Kossel pattern ~, is the angle between the intersec- 
tions of two conics forming a lens-shaped figure which 
is most commonly used in analysing such patterns 
(Heise, 1962). The trigonometric form of equation (16) 
is obtained by writing 

Igl - g2[ 2 = G1 + G2 - 2E 
and 

G1G2 sin 2 q)= U 

and taking square roots this yields 

1 _ Igl-g2[ (17) 
2 4 sin ~0 cos St/2" 

If we replace E by H =  (Ga + G2- 2E), equation (16) be- 
comes 

1 _ G1G2H (18) 
22 4U2(1 +cos V) 

where 

4U=4G1G2-  (GI + G2-  H) 2 
=(Gx+G2+H)E-Z(G~+G~+H2) .  (19) 

It is clear that both U and Ic0[ 2 are perfectly symmetrical 
in the three quadratic forms G1, Gz, and H, which we 
may replace by those corresponding to the triad of vec- 
tors defined in equation (2). Then we may write 

22 
GIGuGuI 

[(G I-b (~;-+ Gm)zz2(G~-F 2 --- 2 Gn + Gin)] 2 ( i+cos  ~, ) 
(20) 

This form of equation reflects the symmetry of the 
double diffraction process and the equivalence of 
double-diffraction conditions applied to each of the 
beams. 

4.2. The condition for triple diffraction 
The double wave-vector, e123, corresponding to triple 

diffraction by the three Bragg planes gl, gz, g3 is denoted 
t and is defined by three equations of the form (3) 

t .  gl = G1 ] 
t g2 = G2 / " 
t g 3 = G 3  

(21) 

It may be readily proved that t is then given by the 
equation 

Wt = Gl(g2 × g3) + Gz(g3 x g l )  + G3(gl × g2) (22) 
where 

W - -g l .  (g2 x g3) .  

The direction and magnitude of the vector t may be 
found by resolving equation (22) into its components. 

In the case of cubic crystals we may normalize with 
respect to the lattice parameter and obtain the following 
expressions: 
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where 

W t  :r, = GI kl It 
G2 kz 12 
G3 k3 113 

Wty  = 
h2 
h3 

hs G1 ll 
G2 12 
G3 13 

= ha ka Ga 
h2 k2 G2 
h3 k3 G3 

(23) 

W =hhl 3 k~ l~ h2 k2 12 
k3 13 

(24) 

The triple diffraction condition is then expressed by 

_ _  2 2 Icol2= =l t lE=t  z + ty + t z .  (25) 

A more general formula for It] z may be obtained by 
squaring equation (22). WZlt[ z is conveniently denoted 
A. Then expanding the scalar products we have 

A = Wz]tIZ=G~(GzGs - E~)+ GZ~(GsG~- E~) 

+ G](GIG 2 -  E~) + 2GzGa(EzEs-G,Ea)  

+ 2GsGI(E3E a - GzEz) + 2G~Gz(EtE z -  G3E3) (26) 
where 

E~ = g2 • g3, etc. 

Rearranging the terms yields 

A = G, G2Gs[(G , + G 2 + G3) - 2(E a + E 2 + E3) ] 
2 2 2 2 2 9 -- (GaE a + GzE z + G3E~) + 2(GzEzG3E 3 

+ GsE3GaE 1 + GaEIGzE2). (27) 

The last two terms are better written in the form 

_ GzE2 + G3E3) • (G1EI+G,E2+G3Es)E_2(GZlE2+ 2 2 2 2 

Alternatively we may use another abbreviation and 
write 

Ma = (GzE2 + G3E3 - G1Ea), etc. 

Then the last two terms reduce to MEM3+ M3MI+ 
M1M2.  

The calculation of W, the volume of the reciprocal 
cell, will not be repeated here, but the result is as fol- 
lows. 

W2= GaG2G 3 + 2E1EEEs - ( G I E  ~ + G2E ~ + G3E]). (28) 

The condition for triple diffraction is 

4/2z=I t I2=A/W 2 . (29) 

An alternative formula for Itl z may be derived by 
replacing the scalar products, E~, throughout by the 
quantities, Hi, which are defined by the relations HI = 
G2+ G 3 -  2Ex, etc. The calculations will not be repro- 
duced here, but they result in the following expressions, 
if we make use of the abbreviations, 

N1 = G2Hz + G3H3 -- G1Ha 

etc. Then 

4A = N2N3 + N3N1 + NINz (30) 

4 W2 = (Ga + Hx)N~ +(G2 + H2)Nz +(G3 + H3)N3 
-- GzG3Ha - G3GaH2 - GaG2H3 - H1H2H3. (31) 

In the case of cubic crystals it is, however, usually more 
convenient to leave W in its determinantal form, equa- 
tion (24). 

4.3. Calculation o f  angles between doubly-diffracted 
beams 

When the sphere of reflexion does not coincide with 
a point of triple diffraction, the triply-diffracted beam 
is replaced by three doubly-diffracted beams, each 
shared by a pair of Bragg reflexions, and designated 
C023, 12031, 12012. These are shown in Fig. 3. The difference 
vectors boa, b02, b03 are defined by the relations b01 = 
e031- eoa2, etc. The angles between pairs of doubly-dif- 
fracted beams are similarly defined ~a, ~'z, ~u3, and 
given by the cosine formula: 

Ib01lZ=21c01a(1-cos ~b¢l) ] 

Ib02l 2 = 21%12(1 - cos ~//2) / " 
[b0312 = 21%12(1 -- cos/if3) 

(33) 

It is convenient to measure from the triple intersection 
t, rather than the critical points s~j. Thus, if vi are vari- 
able parameters, 

C23=t+v l (g2×  g3) ] 
e31 = t + v2(g3 x gl) / " (34) 
1212 = t + v3(gl × gz) 

Finally, the double wave-vectors must satisfy the con- 
dition 

1%12= 112023[ 2= [C03a[ 2= 1cm212 = 4/2 2 . (35) 

These equations are sufficient in principle to establish 
relationships between the angles, ~u~, and the wave- 
length and lattice parameters. However, although the 
gti may be calculated directly from a knowledge of the 
latter, there is, in general, no analytical solution of the 
equation for 2 in terms of the ~ .  

There is, however, a special case in which the equa- 
tions are exactly soluble. This occurs when the follow- 
ing identities are observed 

G2= G3 ] 
Ez=E3 
H2 = H3 

from which it follows that 

Ib0212- Ib03l 2 
~Or2 = I//3 

V 2 = V 3 

(36) 

These relationships are automatically satisfied when 
there is a plane of Laue symmetry containing ga and in 
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which g2 and g3 are mirror images. From equation (33) 
we have 

Ibox[ z = 1c031 - Cox2l 2 
= vzZ[(g3 x g~)-  (gl x gz)] z 
= v212GI(G2 + E l ) -  4E~] 
= 21e012(1 - c o s  ~ffx). (37) 

In the calculation of v2(= v3) it is necessary to derive 
expressions for W2[tl2=A, W z, and the product 
Wt. (gx x g2) which will be abbreviated with the symbol 
03 (=  f2z). From equation (26) above we obtain 

A = W2ltl 2 = Gz(Gz- E1)[G~(G2 + El) --}- 2G2(G2- 2E2)] 
= GI(G2-- Ex)[2G2(Gx --I- G 2 -  2Ez) - GI(G2- E,)] (38) 

and from equation (28) 

W 2 = ( G  2 - E1)[GI(G 2 --~ E x ) -  2E21, (39) 

from which the following condition for exact triple 
diffraction may be derived. 

4 GI[2Gz(Gx + G z - E z ) - G I ( G z - E I ) ]  (40) 
22 -- ]t12 -- G~(G~ z + E ~ ) -  2E 2 

Using equation (22) f23 may be expressed 

f23 = Wt. (gx x g2) = Gx(G2 - Ex) (Gz - Ez). (41) 

Finally, from equations (37) and (39) we may write 

(G2-  E1)1c0122(1 - cos ~Ul)=2WZv~. (42) 

Now, if we square equation (34) and multiply by W 2 
the following equation is obtained; 

WZleol2 = A q-2Wv3~23q-(Wv3)zu3 (43) 
where 

U ~ . = ( a , O ~ - E ~ )  . 

It is useful at this stage to abbreviate the expression 
2 (1-cos  ~1) by the symbol ~P~. Then eliminating v 3, 

WZlco[ z = A + [2(G 2 -- El)] 1/2~c'23 [c0[~gx 
+½(G2-E,)  (G,G2-E2)Ieo 12qJ~. (44) 

If we substitute the expressions derived above, this 
equation is divisible by ( G z - E x )  and may be written 
in the form 

Pco = S +  gle0lWx + Ole012W1 z • (45) 
where 

p =GI(G 2 + E 1 ) - 2 E  2 (46) 

Q = I ( G t G 2 - E 2 )  (47) 

R = Gl(G 2 - Ez)[2(G 2 -  E,)] '/z (48) 

S = GI[ZGE(Gx + G 2 -  2E2)-  GI(G2- Ex)]. (49) 

Equation (45) is quadratic in ]c0l =2/2 and q~x, and has 
the following general solution for 2/2: 

( 2 )  = R ~ I  + [(R2 - 4QS)u~z + 4PS]'/2 (50) 
2 ( P -  QqJ~) 

Although this equation is valid for all values of Wx, it 
is the case of small qJx that is of the greatest interest in 
determining lattice parameters. Thus it is useful to ob- 

tain an approximate formula for 2/2 valid in the neigh- 
bourhood of a triple diffraction condition. Let us as- 
sume that terms in q~ and above are negligible. Then 
we may expand ~x as follows. 

q~x =2  sin gtx/2~ ~/]'X (51) 

and equation (50) becomes 

R (--~-) = ½ ( S )  1/2 [ l - k - ( R 2 8 4 ~ 8  ) ~2] -t- ~--pl//x . (52) 

Equivalent expressions for P, Q, R, S may be obtained 
if El, E2 are replaced by Hx = 2(G2- El), and H2 = G1 + 
G2-2E2 .  Then we have 

2P = 4GzH2 - GIH1 - (G2 -t- H2 -- G1) 2 (53) 

2 Q = 4 G z H z - ( G 2 +  H 2 -  GI) 2 (54) 

2R = H I/2Gl(G2 + H2 - G1) (5 5) 

2S = GI(4GzH2 - GI/-/i). (56) 

Again the terms have been arranged to demonstrate 
the symmetry between G2 and H2. The exact triple dif- 
fraction condition, equation (40), becomes 

22 
G1(4G2H2- Gall1) 

4G2H2 - GxHx - (G2 -t- H2 - Gx) 2 " 
(57) 

It is interesting to note that if Ha=0,  i.e. if g2=g3, 
equation (57) becomes identical to the equation for the 
critical double diffraction case (9), and equation (52) 
is equivalent to equation (16). 

P u t t i n g  H 2 = G I I I  and dropping the suffix from H1 
we may write equation (40) in its symmetrical form. 

22 
4GIGI'GIII - GI H (58) 

Gn + Gin) GIH" (G I q- Gii-b GIII) 2 -- 2(G~ + 2 2 _ 

Although in the general case, when there is no symme- 
try relationship, it is not possible to deduce an exact 
expression for the wavelength and lattice parameters 
in terms of the angular separation ~', it is possible to 
derive a formula linear in ~, which is a good approx- 
imation provided that ~/J is sufficiently small that terms 
in gt2 and higher may be neglected. This condition is 
satisfied in the case of near triple diffraction which is 
of particular interest. Fig. 5 shows how when the dif- 
ference between [e0l and It[ is small, a small tetrahedron is 
formed by the three Kossel planes and the sphere of 
reflexion, which in this region may be approximated 
by a plane surface normal to the direction OT. Since the 
~ are small and leol-  Itl equation (33) may be written 

Iboxl = ~llt[  ] 
[bo21 = ~'21tl / " 
]boa1 = ~3[tl 

(59) 

A simple method of calculating [box[ follows. Let us 
construct a tetrahedron similar to TCox2 C023 C03x by 
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projecting the Kossel plane intersections until they in- 
tersect a plane normal to OT, but passing through the 
origin, at points Ct~2 Ct23 Ct3b as shown in Fig. 5. The 
two tetrahedra are related by a scale factor Itl/([Col- 
]t[), so we may write 

so that 

Ib011 9"11t1 2/A-It l  
[btl[ [btll Itl 

(60) 

2 
= Itl + It129"dlbt l (61) 

where 

Ibtxl 2 =  [c t31-c t212[  2 =  [Ct3112+ Ictazl 2 -  2ct31 . Ctl2. (62) 

Similar equations apply to 9'2, 9"3. 
The plane through the origin is defined by the fol- 

lowing equations 

C t 2 3  • t=ct31, t=ct12, t = 0 .  (63) 

Combined with the equations for the Kossel planes 
(21) this yields the following expressions 

t .  (g2 x g3)ct23 = G2(g3 x t ) -  G3(g2 x t) ] 
t .  (g3 x g1)et31 = G3(gl x t) - Gl(g3 × t) / " 
t .  (gx × g2)et12 = Gl(g2 × t) - Gz(g, x t) 

(64) 

Before substituting for t from equation (22) it is ne- 
cessary to multiply both sides of these equations by W. 
The denominators of et~j may now be denoted £2t, and 
are given by the following expressions 

~2~ = Wt. (g2 × g3) = G2G3(GI - E2 - E3) + Et M1 ] 
~2 = Wt. (g3 x gl) = G3GI(G2- E3 - El) + E2 M2 I . (65) 
~3 = Wt. (gl x g2) = G1Gz(G3 - E1 - E2) + E3 M3 

We may then write for [btll 

0 2 :  G3G1H2 (71) 

03 = G1G2H3 (72) 

~1 = G1NI (73) 

4Q2 = GIN1 + HzN2 + G3N3 - 202 (74) 

4£23 = Ga N1 + GzN2 + H3N3 - 203.  (75) 

Using these symbols we may also abbreviate the ex- 
pression for 4W 2 given in equation (31) 

4 W2 = (G1 + H1)N1 +(G2+ H2)N2+(G3+ H3)N3 

- ( 0 1 + O 2 + 0 3 ) - H ,  HzH3.  (76) 

5. Some geometrical constructions for triple diffraction 

Since close proximity to a condition of triple diffraction 
results in very favourable circumstances for precise lat- 
tice parameter measurement, it is important to be able 
to predict these conditions in advance of experiment. 
Instead of the laborious exploration of the Kossel pat- 
terns obtained with a variety of wavelengths, the aim is 
to select the radiation and orientation of the crystal re- 
quired. In the case of cubic crystals it would be most desi- 
rable to derive a selection rule governing the normalized 
triple diffraction vectors, t, and their quadratic forms, 
It[ 2. Making use of the choice of radiation, those values 
of 221t12/4 lying close to the suspected value of a 2 would 
then be considered. 

Restrictions on values of It] z corresponding to par- 
ticular crystal lattices and specific intensity contrast ef- 
fects, such as the Renninger effect, would be provided 
by additional selection rules, incorporating those given 
in § 3. The analytical derivation of such rules based 
on equations (23), (27) and (28) has, however, not been 
attempted. 

Co12 

[bt1[2_ I'Q2ct3l[2 q_ [f23ct12[ 2 2-Q2Ctjl.f23ct12 
.Q2 .Q~ t22Q 3 

SPHERE OF 
REFLEXION 

The numerators may be expanded using equation 
(65) above and the basic equations for t, equation (21). 
This yields the following expressions 

[£22et31l z = W2ItIZG3GI(G3 + G1 - 2E2) = A O 2 

[£23et12l 2 = W2ItIZG1G2(G1 + G 2 -  2E3) = A 0 3 

- -  2~'~2Ct31 • ~'~3Ct12 = W2It[2Gt(G2G3 - Mr) = A q)l • 

We now have the following expression for 1/2 

+ 9", + + 

A.2[  9", o, )-,/2] 
- 2W 1 + ~  hz~+E2--]+Q--~s . (70) 

Equivalent expressions for the quantities O~, ~ ,  and 

• (66) ~EFI 
tion f ~. ~ . - I  / ,  .7" / POINT OF 
:21). I - -  i " -  ~ / ~ / , , /  / TI~iPLE 

Ct31 / / ~ ~  / DIFFRACTION 

(68) 
(69) 

/ 
/ 

/ 
/ 

G12 

£2~ may be derived by replacing the Ei by Hi. The re- Fig.5. Kossel plane construction in a near triple diffraction 
Suits are as follows: condition. 
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As an alternative, geometrical methods of predicting 
triple diffraction have been used. Since three-dimen- 
sional constructions are not practicable, it is necessary 
to restrict consideration to wave-vectors lying in a 
single plane of real or reciprocal space, although this 
contains only a fraction of the total number of triple 
diffraction conditions that are possible. In the recip- 
rocal space representation we choose a plane passing 
through the origin and draw the lines of intersection 
with this plane of all the Kossel planes and the sphere 
of reflexion. There is a condition of triple diffraction 

where three lines meet, and those intersections are 
favoured which are close to the circle of reflexion of 
radius 2a/2. 

The most useful choice of intersection plane is one 
of the planes of crystallographic symmetry, because 
being a principal lattice plane it contains a high pro- 
portion of triple points. Also as every Kossel plane is 
duplicated by a plane of Laue symmetry, an intersec- 
tion of only two lines on the diagram corresponds to 
an intersection of four Kossel planes. By exception, 
Kossel planes perpendicular to the intersection plane, 

2ool 
22oj 

{ 0~0 l 
~oj 

Fig.6. Intersection with the 1]0 plane of Kossel planes in the face-centred cubic lattice. The circles concentric at O represent 
spheres of reflexion for Cu KCtl radiation of diamond (Icol = 4.63) and silicon (Icol = 7.05). The circles concentric at K are inter- 
sections of the Ewald sphere for silicon with the layer planes: • Reciprocal-lattice points in even layer planes, O Reciprocal- 
lattice points in odd layer planes. 
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with reciprocal lattice points in the zero layer, are not 
mirrored in that plane. Thus if one intersection is of 
this type only triple diffraction occurs. The two doubly- 
diffracted beams formed in the Kossel plane are them- 
selves related by the plane of symmetry, in which case 
it is possible to derive an exact formula for the lattice 
parameter in terms of their separation ~, as shown in 
§ 4.3. For this reason intersections of this type are of 
particular interest, especially when the zero layer re- 
flexion has a zero structure factor. In cubic crystals 
there are two types of symmetry plane {001 } and {1]0}, 
and the Kossel plane intersections are given by the 
equations: 

h~ + kr 1 = G = (]7 2 n t- k 2 -t- 12) (77) 

for the (001) plane, 

1 
l~+ -V~2-(h+k)rl=a=(h2+k2+12) (78) 

for the (1TO) plane, and the circle of reflexion is defined 
by 

~2 + r/2 = (2a/) .)2.  (79) 

and r/are normalized Cartesian coordinates based on 
the unit 1/a. An example of this type of construction is 
shown in Fig. 6 in which the plane of intersection is 
(1T0), and the Kossel planes of the face-centred cubic 
lattice are depicted. In Fig. 6 the spheres of reflexion 
of Cu Kcq radiation by silicon and diamond are shown. 
As an example the triply-diffracted rays corresponding 
to the intersections of Kossel planes 222/111/11 l, and 
222/313/133 are shown to illustrate the conditions used 
by the authors to obtain a precise value of the lattice 
parameter of silicon (Isherwood & Wallace, 1966). 
[T1] and 133 are mirror images in 1]0 of 1]-1 and 313]. 

It is often useful to combine the Kossel plane and 
Ewald sphere constructions. For example, suppose that 
a pair of symmetry-related non-zero layer reflexions 
has been selected with CO the incident beam. Then the 
Ewald sphere intersects the diagram in a circle of radius 
a/2 whose centre is at K, and triple diffraction with a 
zero layer reflexion occurs if this circle passes through 
a reciprocal-lattice point. Conversely suppose that the 
zero layer reflexion has been selected. The intersections 
of the Ewald sphere with each layer of vertical height 

are concentric circles of radius Q, where ~2 = (a/J,)2_ (2, 
and centre at K when projected on to the zero layer. 
Triple diffraction occurs when one of the circles passes 
through a (projected) reciprocal-lattice point. This is 
illustrated in Fig. 6. 

Two other methods of construction have been used 
to predict the directions of doubly-diffracted beams. 
When the crystal and the radiation have already been 
selected so that the value of a/2 is known, the inter- 
sections of the Bragg cones with the sphere of reflexion 
may be represented by circles on a stereographic pro- 
jection. The intersections of the circles correspond to 
the positions of the doubly-diffracted beams. This con- 
struction has been used to interpret Kossel patterns 

and divergent beam patterns (Lonsdale, 1947). An al- 
ternative construction has been used by Cole, Cham- 
bers & Dunn (1962) and Kottwitz (1968). Suppose that 
a single reflexion, G~, is first selected, a forbidden re- 
flexion for example. Then it is useful to plot curves of 
the ratio a/2 against the azimuthal angle, ~, for each of 
the doubly-diffracted beams simultaneously reflected 
by the other Bragg planes, c~ is thus the angle of rotation 
of the crystal about OG1 necessary to bring the doubly- 
diffracted beam into the plane of incidence. 

6. Corrections for refraction 

Since diffraction occurs within the crystal, the value 
of 2 used in all the diffraction conditions given in § 4 
should differ from the value in vacuo, 2c. The dynam- 
ical theory of diffraction allows a small finite range of 
wave-vectors to participate in single or multiple dif- 
fraction with slightly different wavelengths, governed 
by the dispersion surfaces. In calculations it is appro- 
priate to choose a representative value of 2. In the ab- 
sence of diffraction the wavelength in the crystal is re- 
lated to that in vacuo by the formula 

2c - 1 + \~7~ 2 ~,O~_HC2 ] 0 (80) 

where Q is the mean electron density. If the effect of 
absorption may be neglected, this value may be taken 
as the average, provided that the dispersion surfaces 
are centrosymmetric about the intersection point, K, of 
dispersion spheres of radius 1/2. This condition is 
obeyed for single diffraction, but for double diffraction 
only in the case of the Renninger effect, as shown by 
Ewald & H6no (1968). Under conditions when the 
single or double Bormann effect occurs the beams 
which are the least absorbed are those for which the 

LAUE SPHERE 
K~ Kc / 

TZ SPHERE 

NOTTOSCAL 

o 

Fig.7. The refraction correction for beams separated by a 
small angle ~. 



B. J. I S H E R W O O D  AND C. A. W A L L A C E  129 

refractive index is nearest unity. The appropriate aver- 
age wavelength must be derived using the dynamical 
theory and lies between hc and the value given by equa- 
tion (80). 

The authors have found angular deviations and 
changes in intensity in the weak 222 reflexion of silicon 
and germanium, in the neighbourhood of Renninger 
reflexions, which do not appear to be accounted for by 
the existing dynamical theory of diffraction. Until these 
are explained the theoretical refraction correction for 
Renninger reflexions should be treated with reserve. 

A second consequence of refraction is that all the 
angles between beams measured in vacuo are subject to 
a small correction given by Snell's law. We shall con- 
sider here only the effect on the small angle V which 
has been used to derive accurate lattice parameters. 
Fig. 7 shows a pair of doubly-diffracted wave-vectors 
(incident or reflected), separated by the angle V, drawn 
from one of the reciprocal-lattice points to its sphere 
of dispersion of radius 1/h. Outside the crystal the wave- 
vectors must lie on the sphere of radius 1/he. To satisfy 
the boundary conditions at the surface, the wave-vec- 
tors on either side must differ only by a vector parallel 
to the surface normal. In Fig. 7 n, n' are normal to a 
surface of arbitrary orientation. It is clear that if gt is 
small, Akc~_Ak. Thus if Ve is the angle measured in 
vacuo 

Akc he 
Ve-  k - h V.  (81) 

Since the difference between h and he is far smaller than 
the experimental error, for all practical purposes we 
may write Vc = ~'. Thus whereas the individual beams 
may suffer significant deviations due to refraction, the 
angle V does not. This approximation no longer ap- 
plies when the surface normal approaches the direction 
Ak. 

Thus it is clear that when the lattice parameter is 
measured by the method described above the only cor- 
rection for refraction that is necessary is to replace he 
by h using the formula given in equation (80). 

7. Discussion 

'The methods outlined above provide a useful alterna- 
tive to Kossel patterns for the precise measurement of 
lattice parameters. The conditions for obtaining pairs 
of doubly-diffracted beams with a small separation 
can be predicted in advance for radiation of any wave- 
length and formulae for determining the lattice param- 
eters have been derived. The lattice parameters of cubic 
crystals require only a single experimental measure- 
merit of ~u, while for crystals of lower symmetry the num- 
ber of independent measurements necessary is equal to 
the number of lattice parameters. Procedures for crystals 
of lower than cubic symmetry have yet to be evolved. 
The same procedure may also be used to determine the 
wavelength of a radiation when the lattice parameters 
of the crystal are already accurately known. 

APPENDIX 

In this Appendix is given a list of the symbols and nota- 
tion which have been used in this paper, together with 
some basic definitions. The conventional symbols are 
used for the lattice parameters and the wavelength. 

Vectors are denoted by small letters thus, a, and 
their terminations in the diagrams are indicated by the 
corresponding capital, A. The same letter is also used 
to denote the square of the modulus of a vector, A = 
lal 2, and capital letters are used to denote scalar pro- 
ducts of vectors. Angles are denoted by small Greek 
letters. 

The suffixes have the following meanings. Arabic 
numerals indicate reciprocal-lattice vectors, while 
Roman numerals indicate beams. Each Bragg reflexion 
condition satisfied transfers the corresponding suffix to 
the diffracted beams (and superfix to the reflected 
beam). The index zero refers to a beam of the charac- 
teristic wavelength, h. Thus a point in reciprocal space 
carries three suffixes, a line two, and a plane one. 
Elements which are functions of more than one vector 
may combine the suffixes of their components, but are 
usually given simpler indices where possible. 

List of symbols and notation 

Vectors Definitions 
Reciprocal lattice vector g g = ha* + kb* + lc* 
Difference vector h h~j = g~ - gj 
Wave-vector k 
Double wave-vector e c = 2k 
Point on sphere ofreflexion c0 1c012=4/22 
Difference vector b b~j = e~- cj 
Point of critical double 

diffraction s 
Point of potential, triple 

diffraction t t = C12 3 
Normal to surface n 

Quadratic forms 
G, = lgil z 

E,j = g, .  gj 
H,j = I h,j[ 2 = G, + G j -  2E, j 
U,j = [g, × gi[ 2= GiGj-EZij  

Functions o f  three reciprocal-lattice vectors 

W =  gl  • (g2 × g3) = h i  k l  lx a*.  (b* × c*) 

h3 
W *  = d l  • (d2 × d3) = g l  • (g2 × g3)/G1GzG3 

The following definitions are subject to the operation 
of cyclic permutation of the indices 1, 2, 3 symbolized 
G.  ~ indicates the cyclic sum. 

123 

M1 = GzEz + G3E3 - G1E1 
C) NI = G2H2 + G3H3 - GIH1 

Ol -- G2G3(Gz + G3-- 2EI)=G2G3H1 
C~ ~1 = 2Gx(G2G3- M1) = G1N1 

A C 27A - 3 
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G ~'~1 = G2G3(G1 - E2 - E3) + ElM1 
G 4f21 = H1N, + GzN2 + G 3 N 3  - 201 

123 

4 W z = ~[(G1 + HON1 - 01] - HIHzH3 
123 

zI =G1GzG3Z(G1-2E1)+ ~_M2M3 
123 123 

= 
123 

Angles 
Angles between planes ~0 
Bragg angle 0 
Angles between wave-vectors gt 

= 2 sin ~'/2 

Physical parameters 

Wavelength in space 2c 
Wavelength in crystal 2 
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Tensor Analysis of the Harmonic Vibrations of Atoms in Crystals 
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It is shown how the tensor algebra of general affine systems gives a useful and natural representation 
of the harmonic vibration tensor U. Formulae given by Cruickshank for the 'smearing function' t(x) 
and its Fourier transform q(h) are proved to be generally valid, provided the upper and lower suffix 
notation is used for the vector and tensor components. It is also shown how representing the tensor 
U in a system whose basis vectors are unit vectors and parallel to the crystal axes has many advantages. 
Finally a simple formalism for the determination of metric quatities of U, introducing its mixed com- 
ponents Uj, is suggested. 

Introduction 

The purpose of the present note is to treat the problem 
of describing the thermal motion of atoms as one of 
tensor analysis in affine systems. 

Assuming an anisotropic harmonic potential field, 
the thermal motion of atoms in crystals is normally 
described for every atom in terms of the well-known 
symmetric tensor U (Cruicksb_ank, 1956). The crystallo- 
graphic system in which this tensor is defined is an 
affine system (i. e. a system whose axes and interaxial 
angles are in general a~ ¢ az ¢ a3, 71 ~ Y2 ~ Y3, ~'~-~ n/2). 

The problem of describing the thermal motion of 
atoms has therefore a more logical and natural for- 
mulation if for any general affine system a I we introduce 

its own reciprocal system a t defined by at.  a i=  ~ ,  and 
use these dual bases throughout the vector and tensor 
analysis of the thermal motion. 

Three main conclusions are reached: 

i) Cruickshank's (1956) original formulae (1.6) and 
(1.7) for the 'smearing function' t(x) and its Fourier 
transform q(h) are valid in any non-orthogonal 
crystal system provided contravariant components 
of U and covariant components of 1, with respect to 
crystal axes, axe used in formula (1-5) of the same 
paper; 

ii) it is useful to refer the tensor U to a coordinate 
system whose basis vectors are unit vectors parallel 
to the crystal axes, in order to give an expression 


